2023年数形结合,论文(3篇)

时间:2023-08-16 10:35:06 来源:网友投稿

下面是小编为大家整理的2023年数形结合,论文(3篇),供大家参考。

2023年数形结合,论文(3篇)

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

数形结合 论文篇一

一、数形结合教学思想在小学数学教学中的运用

数形结合作为一种教学思想方法,一般包含两方面内容,一个方面是“以形助数”,另一个方面的内容是“以数解形”。下面介绍这两个方面的内容在小学数学教学中的运用。

(一)以形助数

所谓“以形助数”,是指老师在讲解某些数学知识的时候,仅靠数字讲解学生不太能理解,借助几何图形的特点,将所要讲的知识点更直观地展现在学生面前,从而将抽象化的问题转变为具体化的问题。学生在学习行程问题的应用题时,可以运用图形的办法清晰地展现问题。如:一辆汽车从甲地开往乙地,先是经过上坡路,然后是平地,最后是下坡路,汽车上坡速度是每小时20千米,在平地的速度是每小时30千米,而下坡的速度则是每小时40千米,汽车从甲地到乙地一共上坡花了6小时,平地花了2小时,下坡花了4小时。请问汽车从乙地到甲地需要多长时间?在这道题中,既存在变量,又存在不变量。变量就是上坡路和下坡路随着汽车行驶的方向而发生改变,当汽车从乙地到甲地行驶时,原先的上坡路变成了下坡路,原先的斜坡路变成了上坡路。而不变量就是这两个路程汽车行驶的速度都是始终不变的。那么在解决问题的时候,就可以直观地展现出来。先算出汽车从乙地到甲地的上坡时间,即(40×4)÷20=8(小时),然后算出下坡所花费的时间,即(20×6)÷40=3(小时),而平地所花费的时间是不变的,所以汽车从乙地到甲地所花费的时间是8+3+2=13(小时)。在这道题中,运用图像将数学中的数量关系、运算都直观地展现出来,学生比较易于理解,这样的教学可以在很大程度上提高教学效率。

(二)以数解形

虽然图形可以更加直观地展现数学中的数量关系,但是对于一些几何图形,特别是小学数学中的几何图形来讲,非常简单,如果仅仅是通过直接观察反而看不出规律,这时就可以运用“以数解形”的方式教学。比如老师在讲解“平行四边形的特征”一课时,很多学生通过学习,对概念性的东西已经非常了解,但是在具体的情况下又不能真正把握清楚,老师在教学过程中就可以通过对四边形进行赋值,让学生更深刻地理解和把握。比如给出三组数字:(1)6,5,3,7(2)7,5,5,7(3)8,6,4,6在这三组数字中,让学生选择平行四边形。那么学生理解了平行四边形的概念,即两组对边要平行且相等,通过比较分析,知道只有第二组数字符合平行四边形的概念。因此,在这样的教学中应该充分运用“数”与“形”的特点,帮助学生更快地掌握知识要点。

二、在小学数学教学中运用数形结合教学思想需要注意的问题

(一)注意培养学生运用数形结合方法的习惯

老师在小学数学中运用数形结合的方法进行教学,帮助学生更好地理解知识点,同时要注意培养学生运用数形结合方法解决数学题的习惯。小学生在平时的做题过程中,常常会忘了使用“数形结合”方法,有的还不会。因此,老师在平时的教学中,一定要培养学生养成运用数形结合方法的好习惯。针对不同的年龄段学生,采用不同的方法,比如低年级学生,引导学生在生活中找实物,高年级的学生则学会简单的画图等,让学生建立数形结合的思想。

(二)数形结合要注意利用多媒体技术 多媒体的发展已经迅速蔓延到教学领域,对于比较难懂的知识点,老师要借助多媒体技术实施教学。因为多媒体技术可以移动图像,当碰到需要运用想象思维的时候,可以在多媒体中进行展示。

三、结语

在小学数学中运用数形结合教学思想,可以有效提高课堂教学效率,帮助学生更快地理解知识点。教师应根据不同情况,综合运用“以形助数”和“以数解形”这两种不同方式,取得更好的教学效果。

作者:季利明 工作单位:赤峰市元宝山区元宝山镇马林小学

数形结合 论文篇二

高考冲刺:数形结合

编稿:林景飞

审稿:张扬

责编:辛文升 热点分析 高考动向

数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。高考中利用数形结合的思想在解决选、填题中十分方便,而在解答题中书写应以代数推理论证为主,几何方法可作为思考的方法。数形结合的重点是研究“以形助数”,但“以数解形”在近年高考试题中也得到了加强,其发展趋势不容忽视。历年的高考都有关于数形结合思想方法的考查,且占比例较大。

知识升华

数形结合是通过“以形助数”(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形”(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调节作用。

具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题;
或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。

选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。

1.高考试题对数形结合的考查主要涉及的几个方面:

(1)集合问题中venn图(韦恩图)的运用;

(2)数轴及直角坐标系的广泛应用;

(3)函数图象的应用;

(4)数学概念及数学表达式几何意义的应用;

(5)解析几何、立体几何中的数形结合。

2.运用数形结合思想分析解决问题时,要遵循三个原则:

(1)等价性原则。要注意由于图象不能精确刻画数量关系所带来的负面效应;

(2)双方性原则。既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分

析容易出错;

(3)简单性原则。不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利;

二要选择好突破口,恰当设参、用参、建立关系,做好转化;
三要挖掘隐含条件,准确界定参变

量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线为佳。

3.进行数形结合的信息转换,主要有三个途径:

(1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何;

(2)构造成转化为熟悉的函数模型,利用函数图象求解;

(3)构造成转化为熟悉的几何模型,利用图形特征求解。

4.常见的“以形助数”的方法有:

(1)借助于数轴、文氏图,树状图,单位圆;

(2)借助于函数图象、区域(如线性规划)、向量本身的几何背景;

(3)借助于方程的曲线,由方程代数式,联想其几何背景,并用几何知识解决问题,如点,直线,斜

率,距离,圆及其他曲线,直线和曲线的位置关系等,对解决代数问题都有重要作用,应充分予

以重视。

5.常见的把数作为手段的数形结合:

主要体现在解析几何中,历年高考的解答题都有这方面的考查。

经典例题透析

类型一:利用数形结合思想解决函数问题 1.(2010全国ⅰ·理)已知函数a+2b的取值范围是

a.

解析:画出

由题设有,

b.的示意图。

, ,若,且,则

c.

d.

∴ ,

令 ,

∴ , ∴ 在,

上是增函数。

举一反三:

【变式1】已知函数

。选c.

在0≤x≤1时有最大值2,求a的值。

解析:∵

∴抛物线, 的开口向下,对称轴是,如图所示:

(1)

(2)

(3)

(1)当a<0时,如图(1)所示, 当x=0时,y有最大值,即

∴1―a=2。即a=―1,适合a<0。

(2)当0≤a≤1时,如图(2)所示, 当x=a时,y有最大值,即

∴a―a+1=2,解得

2。

∵0≤a≤1,∴不合题意。

(3)当a>1时,如图(3)所示。

当x=1时,y有最大值,即

综合(1)(2)(3)可知,a的值是―1或2

【变式2】已知函数

(ⅰ)写出

(ⅱ)设的单调区间;

,求

在[0,a]上的最大值。

。∴a=2。

解析:

如图:

(1)的单调增区间:

,;
单调减区间:(1,2)

时,,。

(2)当a≤1时,当

【变式3】已知

()

(1)若,在上的最大值为,最小值为,求证:;

(2)当]时,都

,时,对于给定的负数,有一个最大的正数,使得x∈[0,

有|f(x)|≤5,问a为何值时,m(a)最大?并求出这个最大值。

解析:

(1)若a=0,则c=0,∴f(x)=2bx

当-2≤x≤2时,f(x)的最大值与最小值一定互为相反数,与题意不符合,∴a≠0;

若a≠0,假设,

∴区间[-2,2]在对称轴的左外侧或右外侧,

∴f(x)在[-2,2]上是单调函数,

(这是不可能的)

(2)当,时,,

∵,所以,

(图1)

(图2)

(1)当

所以

即是方程,时(如图1),则的较小根,即

(2)当

所以

即是方程,时(如图2),则的较大根,即

(当且仅当

时,等号成立),

由于,

因此当且仅当时,取最大值

类型二:利用数形结合思想解决方程中的参数问题 2.若关于x的方程有两个不同的实数根,求实数m的取值范围。

思路点拨:将方程的左右两边分别看作两个函数,画出函数的图象,借助图象间的关系后求解,可简化运算。

解析:画出

和的图象,

当直线过点,即时,两图象有两个交点。

又由当曲线

与曲线

相切时,二者只有一个交点,

设切点

又直线,则过切点,即,得, ,解得切点,

∴当时,两函数图象有两个交点,即方程有两个不等实根。

误区警示:作图时,图形的相对位置关系不准确,易造成结果错误。

总结升华:

1.解决这类问题时要准确画出函数图象,注意函数的定义域。

2.用图象法讨论方程(特别是含参数的方程)解的个数是一种行之有效的方法,值得注意的是首先把

方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两

个函数的图象,由图求解。

3.在运用数形结合思想分析问题和解决问题时,需做到以下四点:

①要准确理解一些概念和运算的几何意义以及曲线的代数特征;

②要恰当设参,合理用参,建立关系,做好转化;

③要正确确定参数的取值范围,以防重复和遗漏;

④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,便于问题求解。

举一反三:

【变式1】若关于x的方程在(-1,1)内有1个实根,则k的取值范围是 。

解析:把方程左、右两侧看作两个函数,利用函数图象公共点的个数来确定方程根的个数。

设(x∈-1,1)

如图:当内有1个实根。

或时,关于x的方程在(-1,1)

【变式2】若0<θ<2π,且方程取值范围及这两个实根的和。

有两个不同的实数根,求实数m的解析:将原方程

与直线

转化为三角函数的图象

有两个不同的交点时,求a的范围及α+β的值。

设,,在同一坐标中作出这两个函数的图象

由图可知,当

时,y1与y2的图象有两个不同交点,

即对应方程有两个不同的实数根,

若,设原方程的一个根为,则另一个根为。

∴。

若,设原方程的一个根为,则另一个根为,

∴。

所以这两个实根的和为或。

且由对称性可知,这两个实根的和为或。

类型三:依据式子的结构,赋予式子恰当的几何意义,数形结合解答

3.(北京2010·理)如图放置的边长为1的正方形pabc沿x轴滚动,设顶点,则函数的最小正周期为________;

在其两个相邻的轨迹方程是零点间的图象与x轴所围成的区域的面积为________.

解析:为便于观察,不妨先将正方形pabc向负方向滚动,使p点落在x轴上的点,此点即是函数的一个零点(图1)。

(一)以a为中心,将正方形沿x轴正方向滚动90°,此时顶点b位于x轴上,

顶点p画出了a为圆心,1为半径的个圆周(图2);

(二)继续以b为中心,将正方形沿x轴正方向滚动90°,此时顶点c位于x轴上,

顶点p画出b为圆心,为半径的个圆周(图3);

(三)继续以c为中心,将正方形沿x轴正方向滚动90°,此时,顶点p位于x轴上,为点,

它画出了c为圆心,1为半径的个圆周(图4)。为又一个零点。

∴ 函数的周期为4.

相邻两个零点间的图形与x轴围成的图形由两个半径为1的圆、

半径为的圆和两个直角边长为1的直角三角形,其面积是

举一反三:

2

2【变式1】已知圆c:(x+2)+y=1,p(x,y)为圆c上任一点。

(1)求的最大、最小值;

(2)求的最大、最小值;

(3)求x―2y的最大、最小值。

解析:联想所求代数式的几何意义,再画出草图,结合图象求解。

(1)

表示点(x,y)与原点的距离,

由题意知p(x,y)在圆c上,又c(―2,0),半径r=1。

∴|oc|=2。的最大值为2+r=2+1=3, 的最小值为2―r=2―1=1。

(2)表示点(x,y)与定点(1,2)两点连线的斜率,

设q(1,2),,过q点作圆c的两条切线,如图:

将整理得kx―y+2―k=0。

∴,解得,

所以的最大值为,最小值为。

(3)令x―2y=u,则可视为一组平行线系,

当直线与圆c有公共点时,可求得u的范围,

最值必在直线与圆c相切时取得。这时

,最小值为

∴x―2y的最大值为

【变式2】求函数

解析:的最小值。

则y看作点p(x,0)到点a(1,1)与b(3,2)距离之和

如图,点a(1,1)关于x轴的对称点a'(1,-1),则 即为p到a,b距离之和的最小值,∴

【变式3】若方程x+(1+a)x+1+a+b=0的两根分别为椭圆、双曲线的离心率,则值范围是( )

2的取

a.

b.或

c.

d.或

解析:如图

由题知方程的根,一个在(0,1)之间,一个在(1,2)之间,

则 ,即

下面利用线性规划的知识,则斜率

可看作可行域内的点与原点o(0,0)连线的 则 ,选c。

数形结合 论文篇三

在数学教学中渗透数形结合思想

在数学教学中,教师如果能灵活地借助数形结合思想,会将数学问题化难为易,帮助学生理解数学问题。那么,如何在初中数学教学中挖掘数形结合思想并适时地加以应用呢?下面笔者根据日常的教学实践谈谈自己的见解。

一、从有理数开始就让中学生及早体会数形结合思想

在七年级开始,数轴的引入就大大丰富了有理数的内容,对学生认识有理数、相反数、绝对值以及有理数的运算都有很大的帮助,由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的。相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻划的。尽管我们学习的是有理数,但我们要求学生时刻牢记它的形:数轴上的点。通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则。

例如:

1、比较两个数的大小方法:数轴上两个点表示的数,右边的数总比左边的大,正数大于零,负数小于0,正数大于负数;

2、比2℃低5℃的温度是_______;

3、若|a|=2,则a=______;

4、七年级《数学》(上)的习题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市。在习题中也常出现这类题目。

这些内容如果适当应用数形结合的思想就很容易理解掌握了。

二、不等式(组)内容蕴藏着数形结合思想

在进行 “一元一次不等式和一元一次不等式组”,教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解。这里蕴藏着数形结合的重要思想方法,在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效,如:在分析不等式组的解集情况时,如果老师利用数轴把数转化为“形”从而找出两个不等式的公共解,教学效果会事倍功半。如果老师能结合数轴,画图表示各个不等式的解集,就很容易写出不等式组几种类型的解集。

三、应用题的内容也隐含丰富的数形结合思想。

用示意图分析数学问题,就是运用数形结合思想的充分体现。小学教师在帮助学生分析解应用题,尤其有关行程问题、工程问题等方面的内容时,都不忘用示意图。而到了中学,学生的理解分析能力都有了很大的提高,应用题的内容更为丰富了,复杂了、难度更大了,并且其难点是如何根据题意寻找等量关系布列方程,要突破这一难点,老师在教学中必须充分运用数形结合思想,根据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。数形结合的思想,是最基本的数学思想之一,应用范围较为广泛,因此我们数学老师在教学中要注重数形结合思想方法的渗透、概括和总结,要重视数学思想方法在解题中的应用,数与形是数学中相互依赖的两个方面,在教学中要挖掘数与形的联系,从而加深对所学知识的理解和掌握。

推荐访问:论文 数形结合 论文(3篇) 数形结合论文3000